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Abstract

In this paper, we study dynamic team contests. In the framework of a
Tullock contest between two teams generating impacts according to the
Cobb-Douglas e¤ort aggregation function, we examine how equilibrium



1 Introduction

ìTiming is most important...If the timing is right, even a small action will
produce a huge impact. If the timing is wrong, even if you push hard, only little
will happen. How do you arrive at the timing? This is a complex a¤air.î

ñSadhguru

In this paper, we study the e¤ects of timing of the moves by players in team

contests. Team contests provide a useful framework for modeling a variety of

competitions between Örms, political parties, legal teams, academic teams, and

sports teams. In a team contest, each player performs a separate task, and the

playersíe¤orts are aggregated into a total team impact that, together with other

teamsíimpacts, determines the chances of winning.

We compare di¤erent orders of moves by players in team contests. Suppose

player 1 on team 1 can commit to an e¤ort and make it known publicly (to

his/her team members and to the members of the competing team). Would the

player Önd it beneÖcial to commit to a higher or lower e¤ort? How does the

possibility of such commitment a¤ect all the playersíequilibrium e¤orts and the

teamsíchances of winning?

To answer these questions, we employ the model developed by a recent paper

by Lu and Lu (2020) who consider a two-team contest, in which each team of

which is composed of two players assigned to di¤erent tasks. Players di¤er in

their marginal costs of making e¤ort. The e¤orts of players on a team are aggre-

gated by the same Cobb-Douglas function to produce an impact that determines

the teamís chances of winning through Tullockís contest success function.1 With

this model, Lu and Lu (2020) considered two di¤erent scenarios: (i) all play-

ers make e¤orts simultaneously, and (ii) players make e¤orts in two stages - in

the Örst stage, players who are assigned to the Örst task choose e¤orts; then,

after observing stage 1 e¤orts, players assigned to the second task choose their
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e¤ort levels. Lu and Lu (2020) showed that playersíe¤ort levels and winning

probabilities are the same between (i) and (ii), that is, equilibrium outcomes in

one-stage and two-stage synchronous contests are the same. Building on their

model, we analyze a general two-stage contest with an arbitrary order of player

moves. To Önd the equilibrium, we quantify the impacts of each playerís e¤ort

on the e¤orts of other players using a powerful elasticity formula. With this

tool, we demonstrate in Proposition 1 how the equivalence result in Lu and Lu

(2020) holds in synchronous contests.2



4, we show that their equivalence results for one-stage and two-stage contests

hold for a class of synchronous contests. In Section 5, we show that this is

generally not the case in contests where some actions are asynchronous. When

information about prior choices is publicly available, the contests are generally

unbalancing. In Section 6, we compare all the contests in terms of equilibrium

chances of winning. Section 7 concludes the paper.

2 Literature Review

The literature on dynamic contests is extensive. In a pioneering work, Dixit

(1987) considered a strategic timing choice game in a contest played by a favorite

and underdog, showing that they choose to move sequentially in equilibrium.

Extending Dixitís model by allowing for two rounds of e¤ort decisions, Yilidrim

(2005) showed that there are multiple subgame-perfect equilibria, while there

is no Stackelberg outcome where the underdog leads and the favorite follows.

Ludwig (2012) introduced asymmetric information into Dixitís model, analyzing

playersítiming of moves. In a model with multiple rounds of play, Harris and

Vickers (1987) considered an R&D race, analyzing how an initial lead by a

team a¤ects the subsequent race. Klumpp and Polborn (2006) asked the same

question in the context of the US presidential primary races using the Tullock

contests, and Konrad and Kovenock (2008) analyzed the dynamic race more

generally using all-pay auctions. All of these studies found that the race favors

the player who gained a lead in the initial stages. In contrast, Klumpp, Konrad,

and Solomon (2019) showed a time-invariance result in a majoritarian Colonel

Blotto problem of allocating a given amount of resources to a Önite number

of battlegrounds. Each player decides how much resources to spend in the

next battleground after each battleís result has been revealed. They show that

irrespective of the results of the previous battles, the optimal strategy is to

spend the same amount of resources.



e¤orts are observable by later players. In this model, he found that the total

e¤ort is the highest under a fully sequential contest. In contrast, we have teams

composed of multiple players; in our team contests, the amount of rent dissipa-

tion is the highest in the simultaneous-move contest. Contests played by teams

that are composed of multiple players are subject to free-riding among team

members. Häfner (2012) considered a tug of war race, which may be played by

possibly an inÖnite number of players, and showed that in his model, there is a

unique Markov perfect equilibria. Esteban and Ray (2001) was the Örst paper

that analyzed team contests formally. Assuming that team membersí e¤orts

are perfectly substitutable, the authors showed the conditions under which the

winning probability of a team increases in its size, despite free-riding incen-

tives. Epstein and Meelem (2009) and Nitzan and Ueda (2011) employed CES

e¤ort aggregator functions for team e¤orts to describe e¤ort complementarities

within teams and constant elasticity individual e¤ort costs; they identiÖed the

conditions for free-riding incentives to be overcome by e¤ort complementarities.

However, these papers are not analyzing dynamic intra- nor inter-team strategic

interactions, unlike Lu and Lu (2020) and our paper.

The main result from Lu and Lu (2020) is that the order in which tasks are

performed in team contests does not change the equilibrium e¤orts as long as

tasks are chosen synchronously. In contrast, in multi-activity contests among

individual players, which in our framework corresponds to teams composed of

a single player who chooses e¤orts in each task, Arbatskaya and Mialon (2012)



3 Model

Consider a contest among two teams, i = 1; 2, each having two members j = 1; 2

responsible for performing task j. We will refer to player j = 1; 2 of team i = 1; 2

as player ij. Team members independently choose their e¤ort levels eij ; i = 1; 2

and j = 1; 2. Playersíe¤orts contribute to their teamís chances of winning a

prize, which is the public good with a value normalized to 1. Team membersí

e¤orts are aggregated using the Cobb-Douglas function

Xi = e�1
i1 e�2

i2 ; (1)

where �j 2 (0; 1)



chance of winning, P1 = P2 = 1=2. For future reference, let team 1ís relative

cost advantage be ��1 �
�

c21

c11

��1
�

c22

c12

��2

> 0.

3.1 Elasticity Representation of the First-Order Condi-
tions

In our analysis, it is convenient to use Örst-order conditions in terms of elas-

ticities. Let E�i;eij = d�i

deij

eij
�i

be the elasticity of team iís (relative) power �i

with respect to e¤ort eij . The capitalized E�i;eij signiÖes the total elasticity,

where we are taking the total (not partial) derivative: E�i;eij = d�i

deij

eij
�i

: that is,

player ij evaluates the e¤ect of her e¤ort choice eij by taking the reactions by

successive movers (followers) into account. Thus, the Örst-order condition for

player ijís e¤ort in an elasticity form is as follows:

dUij

deij
= E�i;eij�

1

eij
� cij = 0 (6)

or

E�i;eij� = cijeij : (7)

The expenditures (cost of e¤ort) by player ij are equal to the total elasticity of

team iís (relative) power with respect to e¤ort eij times the balance of power.

The expenditures cijeij are higher when the contest is more balanced and when

the power of team i is more responsive to changes in task j.

To analyze playersístrategic actions, we investigate E�i;eij and � in contests

with di¤erent orders of moves. Thanks to the Cobb-Douglas speciÖcation of the

e¤ort aggregator function, the elasticity of team iís (relative) power �i with

respect to e¤ort eij in partial di¤erentiation is "�i;eij = @�i

@eij

eij
�i

= �j . Notice

that for stage 2 e¤orts, E�i;eij = "�i;eij always holds, but this equality is

generally not true for player ij, who moves in stage 1 if the players in stage 2

can observe eij before they choose their actions. In the following lemma, we

list useful elasticity formulas that will be used to simplify the analysis of the

strategic responses in the contest.

Lemma 1. Suppose g and f are C1 functions and that c is a constant. Then,

we have the following:
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1. for z(x) � xc, we have "z(x);x = c

2. for z(x) � cg(x), we have "z(x);x = "g(x);x

3. for z(x) � f(x)g(x), we have "z(x);x = "f(x);x + "g(x);x

4. for z(x) � f(x)
g(x) , we have "z(x);x = "f(x);x � "g(x);x

5. for z(x) � f(g(x)), we have "z(x);x = "f(y);y"g(x);x

6. for z(x) � (g(x))
c, we have "z(x);x = c"g(x);x

For example, consider the contest where player 11 moves Örst by choosing

e¤ort e11 in stage 1. Then, after observing e11, other players choose their e¤ort

levels simultaneously in stage 2: eij(e11) for ij 6= 11.

To Önd E�1;e11
, recall that �1 = X1

X2
=
�

e11

e21

��1
�

e12

e22

��2

and notice that

�1 is a function of e11, e12, e21, and e22 with "�1;e11
= �1, "�1;e12

= �2,

"�1;e21 = ��1, and "�1;e22 = ��2. Denoting the elasticity of responses by the

followers to e11 with "e12;e11
, "e21;e11

, and "e22;e11
, we Önd the following:

E�1;e11
= �1 + �2"e12;e11

� �1"e21;e11
� �2"e22;e11

: (8)

The responses of the followers depend on the extent of the change in the balance

of power, �, that player 11ís e¤ort brings about. Recall that � = �1(1+�1)
�2,

so

E�;e11 = "�;�1E�1;e11 ; (9)

where

"�;�1 =
1 � �1

1 + �1
(10)

and E�1;e11
is stated in equation (8); "�;�1

2 (�1; 1) for �1 > 0.

In the rest of the paper, we consider this team contest with di¤erent timing of

moves. Our elasticity formula proves useful in understanding playersístrategic

incentives. In the next section, we review the equivalence result found in Lu

and Lu (2020).
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4 Equivalence Result (Lu and Lu 2020)

Lu and Lu (2020) compared the simultaneous move contest (all players choose

their e¤ort levels simultaneously) and a synchronous task two-stage contest (task

1ís e¤orts are selected by both teams in stage 1, and task 2ís e¤orts are selected

by both teams in stage 2). Somewhat surprisingly, they showed that with a

Cobb-Douglas aggregator function, the outcomes of the contests are equivalent,

even if the teams and players are asymmetric.

4.1 One-Stage Contest

Letís start with the simultaneous move game. When all e¤orts are chosen si-

multaneously, we have EXi;eij = "Xi;eij = �j . Hence, the Örst-order conditions

(7) can be written as

cije�
ij = �j�;

where � � �1(1 + �1)
�2 and �1 � X1=X2. This implies e�

11

e�
21

= c21

c11
and

e�
12

e�
22

= c22

c12
, and

��
1 = ��1 �



The Örst-order conditions for stage 1 e¤orts in elasticity formula are written

as

ci1ei1 = E�i;ei1�

=
�
�1 + �2"ei2;ei1 � �2"ei02;ei1

�
�

=

�
�1 + �2" ei2

e
i02

;ei1

�
� = �1�;

where i 6= i0. The last two equations hold by Lemma 1.4 and " ei2
e
i02

;ei1
= 0



From, E�i;eij� = cijeij for i; j = 1; 2, where � = �1(1 + �1)
�2. In stage 2,

after observing e11, the rest of the players choose their e¤ort levels simultane-

ously. For each e11, the optimal stage 2 e¤orts, the elasticity representation of

the Örst-order conditions (7) for e�
12 (e11), e�

21 (e11), and e�
22 (e11) are:

c12e12 = �2� (11)

c21e21 = �1�

c22e22 = �2�;

because E�1;e12 = "�1;e12 = �2, E�2;e21 = "�2;e21 = �1, and E�2;e22 = "�2;e22 =

�2.

Following the discussions after Lemma 1 (8), player 11ís e¤ort e11 a¤ects

team 1ís power as follows:

E�1;e11 = "�1;e11 + "�1;e12"e12;e11 � "�2;e21"e21;e11 � "�2;e22"e22;e11 (12)

= �1 + �2"e12;e11
� �1"e21;e11

� �2"e22;e11
;

so the Örst-order condition for e11 is

c11e11 = E�1;e11� = (�1 + �2"e12;e11 � �1"e21;e11 � �2"e22;e11) � (13)

Thanks to the Cobb-Douglas speciÖcation, we can Önd "e12;e11
, "e21;e11

, and

"e22;e11
from (11) by totally di¤erentiating the identities with respect to e11

(writing in terms of elasticities) and using the elasticity property 2 of Lemma

1:

Ee12;e11
= "e12;e11

= E�;e11

Ee21;e11
= "e21;e11

= E�;e11

Ee22;e11 = "e22;e11 = E�;e11 :

That is, the elasticity of the impact of an increase in e11 on stage 2 e¤orts

is the same as the elasticity of its impact on the balance of power �. This

special property is because of the Cobb-Douglas e¤ort aggregator function, and

it simpliÖes the rest of the analysis tremendously.
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Because the elasticity representation of (9) is E�;e11 = "�;�1E�1;e11 =

1��1

1+�1
E�1;e11

, we have the following:

E�1;e11 = �1 + �2"e12;e11 � �1"e21;e11 � �2"e22;e11 (14)

= �1 � �1E�;e11

= �1 � �1
1 � �1

1 + �1
E�1;e11

:

Solving the above equation for E�1;e11
, we obtain the following:

E�1;e11
= �1

�
1 + �1

1 � �1

1 + �1

��1
: (15)

Thus the Örst-order condition for e¤ort e11 (7) can be written as follows:

c11e11 = �1

�
1 + �1

1 � �1

1 + �1

��1
�: (16)

By the Örst-order conditions (7), we have the following:

e11c11
e21c21

=
E�1;e11

�1
and

e12c12
e22c22

= 1: (17)

Since �1 =
�

e11

e21

��1
�

e12

e22

��2

, it follows that

�1 =

�
E�1;e11c21

�1c11

��1
�

c22
c12

��2

(18)

=

�
1 + �1

1 � �1

1 + �1

���1
�

c21
c11

��1
�

c22
c12

��2

:

Thus, we Önd that the equilibrium power of team 1, �1 = ��
1, is the solution of

�1

�
1 + �1

1 � �1

1 + �1

��1

= ��1; (19)

where ��1 �
�

c21

c11

��1
�

c22

c12

��2

is team 1ís relative cost advantage.

The following technical lemma allows us to prove that there exists a unique

solution ��
1 to (19) for any costs cij > 0 and weights �j 2 (0; 1) for i; j = 1; 2;

and to show that if ��1 < 1, then ��
1 < ��1 < 1; if ��1 > 1, then ��

1 > ��1 > 1.

Lemma 2. Let f(x; a) � x
�

1 + a 1�x
1+x

�a

with x > 0 and a 2 [�1; 1]. Then,
@f(x;a)

@x > 0; @f(x;a)
@a > 0 i¤ a(1�x) > 0. Equation f(x) = �x with any �x > 0 has
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a unique solution x� > 0; if �x < 1 then x� < �x < 1; if �x > 1 then x� > �x > 1;

if �x = 1 then x� = �x = 1.

Finally, from the Örst-order conditions, we have c11e
�
11 = ��1�, c12e

�
12 =

�2�, c21e
�
21 = �1�, and c22e

�
22 = �2�, where � �

�
1 + �1

1��1



e¤orts is beneÖcial for a player because it saves the cost of a stage 2 task.

Here, we have each task managed separately by a team player, so the cost-

saving motive is absent. The reason for a commitment here is to exploit the

best responses of the competitors, which are negatively sloped for the underdog

team (strategic substitutes) and positively sloped for the favorite team (strategic

complements).

By Lemma 2, f(�1; �1) is an increasing function of �1, the equilibrium

power of team 1, ��
1, is increasing in ��1. It is also increasing in �1 whenever

team 1 is the favorite (�1 > 1). This means that the favorite team achieves a

higher power and probability of winning when the task that the favorite commits

to is more ináuential (�1 is higher). The opposite is true regarding the underdog

teamís commitment. The underdogís team commitment diminishes its power

and chances of winning, and this is all the more the case when the task the

underdog is committing to is more ináuential. The extent of the unbalancing

depends on the parameter values. It is impossible to strategically unbalance a

contest that is perfectly balanced based on the costs of e¤ort (��1 = 1).

So far, we have examined synchronous two-stage contests and an asynchro-

nous two-stage contest where a team leads in one task. In the next section, we

study other cases of two-task, two-stage contests. We also compare the odds of

winning by team 1 across the two-stage and one-stage contests.

6 Comparing Across Two-Stage Contests

In this section, we examine two-stage contests with two teams and two tasks.

Tasks in a two-stage contest are divided into stage 2 and stage 1. Without a

loss of generality, assume e11 is selected in stage 1. Then, there are Öve contests

to analyze:

C0. (a synchronous two-stage contest) e¤orts in task 1 are selected in stage 1

and e¤orts in task 2 are selected in stage 2;

C1. one player (player 11) leads, and the rest of the players follow in stage 2;
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C2. one player (player 22) follows, and the rest of the players choose e¤orts in

stage 1;

C3. team 1 leads in both tasks; and

C4. teams lead in di¤erent tasks: team 1 leads in task 1 and team 2 leads in

task 2.

Contests C0 - C4 cover all orders of move in two-stage contests because the

results for any other two-stage contests can be obtained by relabeling the teams,

tasks, or both. (To switch teams, replace �1 with �2 = 1=�1; to switch tasks,

switch �1 and �2.)

For any costs cij > 0 and weights �j > 0, we can compute and compare the

equilibrium e¤orts (e�
11, e�

12, e�
21, e�

22) in two-stage contests and in the one-stage

contest. We can also compare the power of team 1 and the associated balance

of power across the contests. Figure 1 shows the stage 1 and stage 2 e¤orts in

contests C0 - C4. Proposition 3 summarizers the properties of the equilibria.

We show that in general, any asynchronous two-stage contest with publicly

observable commitments is strategically unbalancing by the choice of stage 1

tasks, when compared with a synchronous contest C0 (which is equivalent to

the one-stage contest).

Proposition 3. For any costs cij > 0 and weights �j > 0, i; j = 1; 2, there

exists a unique subgame-perfect equilibrium in every two-stage contest C0 - C4.

The equilibrium power of team 1, �1 = ��
1, is deÖned by f (�1; a) = ��1, with

f(�1; a) � �1

�
1 + a 1��1

1+�1

�a

, where a takes the following values for each case:

C0: a = 0, C1: a = �1, C2: a = �2, C3: a = �1 + �2, and C4: a = �1 � �2;

stage 1 e¤orts are e�
ij = � (��

1)
�j

cij
� (��

1), with � = � (�1) =
�

1 + a 1��1

1+�1

��1
>

1 i¤ a(1 � �1) < 0; and stage 2 e¤orts are e�
ij =

�j

cij
� (��

1), where � (�1) �

�1(1 + �1)
�2



The derivations of the subgame-perfect equilibria for contests C2 - C4 follow

the same steps as for contest C1, which was analyzed in the previous section and

is omitted here. We know that contest C0 is equivalent in terms of outcomes to

the one-stage contest, in which all tasks are chosen simultaneously. However,

contests C1 - C4 do not show this equivalence result.

There are strategic incentives to change stage 1 tasks, but no such strategic

incentives exist for stage 2 tasks. All stage 1 e¤orts are overcommitted by the

same scaling factor �, which is the same for all stage 1 tasks but di¤erent across

contests C1 - C4; stage 1 e¤orts are scaled up by a factor � > 1 if team 1 is

the favorite (��1 > 1). All stage 1 e¤orts are scaled down by a scaling factor

� < 1 if team 1 is the underdog ( ��1 < 1). A perfectly balanced contest remains

perfectly balanced: ��
1 = 1 if ��1 = 1, with no changes in the equilibrium levels

of stage 1 tasks.

The unique solution to the equilibrium power of team 1, ��
1, is found numer-

ically. However, the equilibrium properties, such as the over/under commitment

by stage 1 players, can be obtained without Önding the value for ��
1. Impor-

tantly, assuming ��1 6= 1, the two-stage contest is always unbalancing (the weak

team becomes weaker, and the strong team becomes stronger in two-stage con-

tests). The only exception is in contest C4, where players cross-lead with equally

ináuential tasks, that is, when �1 = �2. In this case, there is no unbalancing,

and there is no strategic advantage to team 1.

The following proposition provides some implications about the timing of

moves that a team leader would prefer if this leader cared about their teamís

probability of winning.

Proposition 4. The favorite team has its highest chances of winning when

it leads in both tasks and the lowest chances of winning in the synchronous

contest. The favorite team has more power when it leads than when it follows

(in one task, in both, or in a more ináuential task). The opposite is true for the

underdog team.
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We always assume �1 > 0, �2 > 0, and �1 + �2 � 1. If �1 � �2 and

�1 � 2�2



of moves with publicly observed commitments. The problem is complex be-

cause when a player makes a choice he/she needs to consider the ináuence of

his/her choice on the choices of all of his/her team members and rivals. Luckily,

with the identical Cobb-Douglas e¤ort aggregator function across teams, some

e¤ects cancel out. For example, the e¤ect on a playerís teammate and their

direct opponent at the next stage cancel out because they change by the same

percentage and the ratio of their e¤orts stays the same. Hence, when there are

only two stages and two tasks, a player who can precommit would only have

to consider the e¤ect of his/her choice on his/her direct opponent if the oppo-

nent moves later. No change occurs when he/she moves together with his/her

direct opponent (synchronous moves); even though the player has the ability to

change the e¤ort levels of his/her teammate and his/her direct opponent, these

changes do not a¤ect his/her payo¤, which depends on the ratio of e¤orts in

other tasks. Therefore, the Cobb-Douglas e¤ort aggregator function allows us

to cancel out all synchronous moves in other tasks. That is, it is possible to

extend our analysis to accommodate the multiple-task case: it is clear that the

equivalence result in Lu and Lu (2020) extends to any synchronous temporal

structure in multiple task cases, which follows the spirit of Fu, Lu, and Pan

(2015). In contrast, without synchronous moves for the same tasks, it is also

clear that the equivalence theorem does not hold in general.
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Appendix A: Proofs





c12e
�
12 = ��2�, c21e

�
21 = ��1�, c22e

�
22 = �2�, where � =

�
1 + �2

1��1



Similarly, E�2;e22 = �2 + (�1 � �2)
1��2

1+�2
E�2;e22 , and therefore E�2;e22 = ��2.

We have c11e11 = ��1�, c12e12 = �2�, c21e21 = �1�, and c22e22 = ��2�,

where � �
�

1 + (�1 � �2)
1��1

1+�1

��1
; �1 =

�
e11

e21

��1
�

e12

e22

��2

= ��1�
�1��2 , where

��1 =
�

c21

c11

��1
�

c22

c12

��2

, and therefore �1 = ��
1 is a solution to �1

�
1 + (�1 � �2)

1��1

1+�1

��1��2

=

��1. By Lemma 2, for any costs cij > 0 and weights �j > 0, i; j = 1; 2, there

exists a unique subgame-perfect equilibrium ��
1; if ��1 < 1 then ��

1 < ��1 < 1;

if ��1 > 1, then ��
1 > ��1 > 1; � > 1 i¤ (�1 � �2) (1 � �1) < 0.�

Proof of Proposition 4. By Proposition 3, the equilibrium power of team 1,

�1 = ��
1, is deÖned by f(�1; a) � �1

�
1 + a 1��1

1+�1

�a

= ��1, where a equals 0,

�1, �2, �1 + �2, and �1 � �2 for contests C0 - C4, correspondingly. Since we

assume �1 > 0, �2 > 0, and �1 + �2 � 1, we have a 2 [�1; 1]. By Lemma 2,

for any �1 > 0 and a 2 [�1; 1], @f(�1;a)
@�1

> 0; @f(�1;a)
@a > 0 i¤ a(1 � �1) > 0.

Equation f(��
1; a) = ��1 then implies that @��

1

@a > 0 if �1 > ��1 > 1 and @��
1

@a < 0

if �1 < ��1 < 1.

We can then rank the contests C0 - C4 in terms of ��
1 for ��1 > 1. If �1 � �2

and �1 � 2�2, then �1+�2 > �1 � �2 � �1��2 � 0 and C3>C1�C2�C4�C0.
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