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Abstract

We consider a sequential formation of alliances à la Bloch (1996)
and Okada (1996) followed by a two-stage contest in which alliances
Örst compete with each other, and then the members in the winning
alliance compete again for an indivisible prize. In contrast to Kon-
ishi and Pan (2019) which adopted an open-membership game as the
alliance formation process, alliances are allowed to limit their mem-
berships (excludable alliances). We show that if membersíe¤orts are
strongly complementary to each other, there will be exactly two asym-
metric alliancesó the larger alliance is formed Örst and then the rest of
the players form the smaller one. This result contrasts with the one
under open membership, where moderate complementarity is necessary
to support a two-alliance structure. It is also in stark contrast with
Bloch et al. (2006), where they show that a grand coalition is formed in
the same game if the prize is divisible and a binding contract is possible
to avoid further conáicts after an alliance wins the prize.

1 Introduction

In their ináuential paper, Esteban and Sákovics (2003) consider a three-person
strategic alliance formation in a Tullock contest model in which players com-
pete for an indivisible prize, and demonstrate that an alliance involves strategic
disadvantages (see also Konrad 2009). There are two main disadvantageous
forces against forming an alliance: First, if an alliance is formed, there will be

�Department of Economics, Boston College, USA. hideo.konishi@bc.edu
ySchool of Economics and Management, Wuhan University, PRC. panwhu@126.com

1





and end up with a trivial grand alliance.4 They show that for intermediate
values of the CES complementarity parameter, there exists a unique nontrivial
two-alliance equilibrium.

In contrast, in this paper, we use Blochís (1996) and Okadaís (1996) se-
quential coalition (alliance) formation game (along the line of a noncooper-
ative coalition bargaining game in Chatterjee, et al. 1993). Although the
open-membership game in Konishi and Pan (2019) is widely used in coalition
formation games, the non-excludability ñthat is, players are allowed to freely



complementarity parameter under a small number of players (ten players). We
show that there will be no alliance if � is small, but as � goes up the sizes
of alliances increase. Once � passes a certain threshold value, there will be
only two (asymmetric) alliances in equilibrium, and every player participates
in alliances as we have shown in our main theorem.

The rest of the paper is organized as follows. In the next subsection, we
review the relevant literature. Section 2 introduces the model, and Sections 3
and 4 investigate subgames in stages 3 and 2, respectively. Section 5 presents
results on equilibrium alliance structures, and Section 6 provides numerical
examples. Section 7 concludes.

1.1 Literature Review

Since we provide a general literature review in our companion paper (Konishi
and Pan 2019), we will concentrate on the games that determine an alliance
structure. In the companion paper, we used so-called open-membership game
where all players can move freely without being excluded from alliances.5 How-
ever, depending on the nature of alliances we consider, we may want to see how
equilibrium alliance structure is a¤ected by allowing exclusive memberships of
alliances.

Although we can think of di¤erent ways to introduce ìexcludability" of
alliance memberships in an alliance formation game (see Hart and Kurz 1983,
and Bloch 1997), the most popular way in the literature is to extend Rubin-
steinís two-person noncooperative bargaining game to a sequential coalition
formation game: Chatterjee et al. (1993), Bloch (1996), Okada (1996), and
Ray and Vohra (1999), among others. Although their games di¤er in the
methods of choosing the proposers (following di¤erent protocols), the proce-
dures for forming coalitions are the same. At each stage, a proposer proposes
a coalition she belongs to, and ask the members of the coalition whether or
not they accept the o¤er. If every member accepts the o¤er, then the coalition
is formed, and the leftover players continue to form coalitions by the same
procedure. If any of the members of a proposed coalition rejects the o¤er, the
coalition is not formed, and a new proposer is speciÖed by the protocol.

In the context of contests, Bloch et al. (2006) generalize the model sub-
stantially to analyze the stability of the grand alliance in di¤erent alliance
formation games, including a sequential coalition formation game in Bloch
(1996). Sánchez-Páges (2007a) explores di¤erent types of stability concepts

5Baik and Lee (1997, 2001) use open-membership games to describe alliance formation in
endogenizing the alliance structure in Nitzanís (1991) game with endogenous group sharing
rules.
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including sequential coalition formation games in alliance formation in con-



and a time discount factor � 2 (0; 1) applies to the Önal payo¤. The process
continues until there is no player left and � = fS1; S2; ::::; SJg is formed.

We introduce potential beneÖts for players who belong to an allianceó
complementarity in aggregating e¤orts by all alliance members. That is, if
player i belongs to alliance j = 1; :::; J with Sj � N as the set of members,
and these members make e¤orts (ehj)h2Sj

, then the aggregated e¤ort of alliance
j, Ej, is described by a CES aggregator function

Ej =

0@X
h2Sj

e1��
hj

1A 1
1��

; (1)

where � 2 (0; 1] is a parameter that describes the degree of complementarity:
if � = 0 it is a linear function, and if � = 1 it is a Cobb-Douglas function.
Thus, as � goes up, the complementarity of membersíe¤orts increases.

Candidate i in alliance j decides how much e¤ort eij to contribute to her
alliance j. The winning probabilities of an alliance is a Tullock-style contest.
That is, an alliance jís ìwinning probabilityîgiven its membersíe¤orts is

pj =
EjP

k2J Ek

: (2)

An indivisible prize is valued as V > 0, which is common to all players. Since
the prize is indivisible, one player in the winning alliance in the second stage
must be selected as the Önal winner in the third-stage contest.

In the third-stage competition, we assume that a Tullock contest takes
place within the winning alliance Sj. Denoting the second-stage e¤ort as êi,
the winning probability of player i 2 Sj is

pi =
êiP

h2Sj
êh

(3)

Formally, an alliance structure is a partition of the set of players N , � =
fS1; :::; SJg; where each alliance j consists of a set of players Sj and [j2JSj =
N , and Sj0 \Sj = ; for any j; j0 2 f1; :::; Jg with j 6= j0. Since we assume that
players are ex-ante homogenous, we also call fn1; :::; nJg an alliance structure
with nj = jSjj for all j = 1; :::; J . Our three-stage dynamic contest game with
sequential alliance formation is summarized as:

Stage 1. In round j = 1; 2; :::; one player is selected as a proposer with equal
probability among all active players in the round j, Nj, where N1 = N .7

7This is the random proposer protocol put forth by Okada (1996). Bloch (1996) uses a
deterministic protocol, but the results we obtain in these two setups are the same if e¤ort
complementarity is high enough.
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The selected player proposes an alliance Sj � Nj. All other players in Sj

either accept or reject the proposal sequentially. If all other players in
the alliance Sj accept the proposal, Sj is formed and removed from the
process, and j+1 round starts with the remaining players Nj+1 = NjnSj.
Otherwise, payo¤ discounts by � 2 (0; 1) apply to all players, the round
r + 1 starts with Nj+1 = Nj by the same rule. The process continues
until there is no player left and � = fS1; S2; ::::; SJg is formed.8

Stage 2. All players i 2 N choose e¤ort ei 2 R+ simultaneously, knowing the
aggregated e¤ort of her alliance is (1). The inter-alliance contest is a
Tullock contest with winning probabilities equal to (2).

Stage 3. All members of the winning alliance Sj choose e¤ort êi 2 R+ simultane-
ously. The ultimate winner is selected by a simple Tullock contest with
winning probabilities equal to (3).

We use standard subgame perfect Nash equilibrium as the solution of this
dynamic game. We consider equilibria in pure strategies only. We will analyze
this game by backward induction.

3 Equilibrium

3.1 Stage 3: Final Contest within the Winning Alliance

In the third stage, all members in the winning alliance Sj in the Örst stage
engage in a Tullock contest by exerting e¤ort êi � 0



Since players are homogeneous, pi(1 � pi) =
nj�1

n2
j

is the same for all i in the

winning group j. Then, we have the following proposition.

Proposition 1. Suppose that the winning alliance of the Örst stage has size
nj. Then, the second-stage equilibrium strategy and payo¤ are

êj =
nj � 1

n2
j

V and ~V j =
V

nj

�
1� nj � 1

nj

�
=

V

n2
j

3.2 Stage 2: Contest between Alliances

Consider an inter-alliance contest problem. Without loss of generality, we
reorder any alliance structure � from the Örst stage so that n1 � n2 � ::: � nJ�.
From Proposition 1, we know that for a given size of alliance nj the payo¤ of
intra-alliance contest is determined by ~Vj =

V
n2

j
. In the companion paper,

Konishi and Pan (2019) have the following result.

Theorem 1. (Konishi and Pan, 2019) There exists a unique equilibrium in
the second stage for any partition of players � = fn1; :::; nJ�g characterized
by j� 2 f1; :::; J�g such that p�

j > 0 (active alliance) for all j � j�, while
p�

j = 0 (inactive alliance) for all j > j�. Moreover, the members of alliance
j = 1; :::; J� obtain payo¤

uj =

8><>:
1

n2
j

"
1� (j� � 1) n

2�3�
1��

jPj�
j0=1

n
2�3�
1��

j0

#59(0)a"



3.3 Stage 1: Alliance Structures under Sequential Coali-
tion Formation

Here, we consider a sequential coalition formation game with exclusive alliances
a la Bloch (1996) and Okada (1996). The main results are as follows.

Theorem 2. For any N , there is ��(N) such that, for all � � ��(N), there
are only two alliances in equilibrium. All players belong to one of the two



and

g(x; �x; J + 1) =

�
J 1

�x� � (J � 1) 1
x�

�
x2
�
J 1

�x� +
1

x�

�
We have the following result.

Lemma 1. Suppose that J � 1 alliances with their average size �x have been
formed and remain active even with the entry of the J + 1 alliance. Then, (i)
@u(x;�x;J+1)

@�x
< 0 for all x and �x, and (ii) @u(x;�x;J+1)

@x
> 0 holds for all J�1

J
�x ��

x
�x

�� � (2+�)J�4
2J

when � � 2. Moreover, if
�

x
�x

��
< J�1

J
, then even if the J+1th

alliance with size x enters, it cannot be active.

The implications of this lemma are listed in the following corollaries.

Corollary 1. When � > 4
J
, then the best response of the J + 1th alliance

satisÖes x > �x



alliance with a higher winning probability dominates the loss from sharing with
a larger group.

Lemma 6. Suppose that among J formed alliances, JM � 1 of them have
the largest size xM , and xM < 1 �

PJ
j=1 xj < 2xM . For � � ~�(N) for

some ~�(N), we have u(xM + 1
N

; xM ; JM) > u(x; xM ; JM) for all x � xM ,

and u(xM ; xM + 1
N
; JM) < u(1

2

�
1�

PJ
j=1 xj

�
+ 1

N
; 1

2

�
1�

PJ
j=1 xj

�
� 1

N
; 1).

That is, the beneÖts of belonging to a larger alliance with a higher winning
probability dominates the losses of sharing with a larger group.

Proof of Theorem 2. We can rename ��(N) by the maximum of the original
�(N), �̂(N), ��(N), and ~�(N). Let ��(N) be � that corresponds to ��(N): By
the sequence of the lemmas above, we consider the second moverís best or
better responses.

1. Suppose that x1 � 1
2
. By Lemma 1, x2 = 1� x1 is the best response.

2. Suppose that 1
3
� x1 < 1

2
. Suppose that x2 � 1�x1

2
. We will show that

forming multiple same-size alliances is dominated by forming an alliance
of size x1+

1
N

. Suppose that two or more size-x2 alliances are formed after
a size-x1 alliance. In this case, x2 � x1 holds. By Lemma 3, having only
one size-x2 alliance is generally better than forming multiple of them.
Since x2 � x1, calling x2 is dominated by calling x1 by Lemma 1. But
Lemma 4 suggests that for the second mover calling x1 +

1
N

dominates
calling x1, since Lemma 2 implies that there will be only two active
alliances if x1 + � is called. NNNNl
[]0 d
0 J
0.478 +

N



this behavior by the J�1th alliance, the J�2th alliance can call a little
more than one half of the set of players who do not belong to alliances
1 to J � 3 (Lemma 6). Then, only the J � 2th and the J � 1th alliances
will remain active, and alliance 1 gets zero payo¤ (the J � 1th alliance
is formed by all of the rest of the players by Lemma 1). Thus, this case
cannot be an equilibrium as well.

Hence, only case 1 can happen in equilibrium, and there are only two
alliances in equilibrium, all players belong to one of the alliances, and the Örst
alliance is larger than the second.�
Remark. Since x1 > x2 holds with u(x1; x2; 2) > u(x2; x1; 2) in equilibrium,
there will not be any delay in forming coalitions. That is, the same outcome
would realize independent of the protocol.

4 Examples with Small Population

For our analytical result, we will consider the cases of relatively low comple-
mentarity parameter with a small number of players N = 10. The comple-
mentarity parameter value � � 6



(0:027344; 0; 027344). If the second alliance calls a size 3 alliance, then
the third alliance will be size 3, and their payo¤s for (4; 3; 3) are (0:04
2323; 0:010809; 0:010809). Thus, the second mover will call a size 5, and
the payo¤s for (4; 5) are (0012521; 0:028641).

5. The Örst mover calls a size 3 alliance. If the second mover calls a size
3, then the rest form a size 4, and this is not beneÖcial for the second
mover (see above). If she calls a size 4, then (3; 4; 3) realizes with (0:01
0809; 0:042323; 0:010809). If she calls a size 5, then (3; 5) realizes, leaving
an inactive size 2 alliance with payo¤s (0:0089861; 0:034598). So, her best
response is to call a size 4 alliance.

6. The Örst mover calls a size 2 alliance. Then, the second mover calls a
size 5 alliance, making the Örst moverís alliance inactive. The payo¤s for
(5; 3) are (0:034598; 0:0089861).

In summary, the Örst mover calls size 6 alliance. The Örst two alliancesí
payo¤s from (6; 4) are (0:022558; 0:0081571).

4.2 Case 2: � = 5
6 or � = 3

When � = 5
6
, the general pattern is similar to the case of � = 6

7
, except for



4.3 Case 3: Smaller �s

When � = 4
5

(� = 2), the situation is the same as in the � = 5
6

case. The
equilibrium (active) alliance structure for this case is (4; 4). How about for an
even smaller �? When � = 3

4
(� = 1), we have an (active) equilibrium alliance

structure (3; 3; 3), achieving payo¤s 0:028807. Note that this number is higher
than the payo¤ from (4; 4), 0:027344. With this low complementarity, even
if the Örst mover calls a size 3 alliance, the second mover does not beneÖt
by calling a size 4 or 5 alliance. Having a large alliance just intensiÖes the
subsequent Öght, and (3; 3; 3) realizes.

When � = 2
3

(� = 0), the equilibrium alliance structure is (2; 2; 2; 2; 2) with
payo¤s 0:03. There will be no further spino¤ for this N = 10, since calling a
one person alliance increases the number of alliances, which is harmful to the
player (an independent player gets 1

36
< 0:03 from (2; 2; 2; 2; 1; 1)). However,

if N goes up, all alliances are resolved, going back to the standard Tullock
competition.

5 Concluding Remarks

In this paper, we consider an alliance formation game in Tullock contests
when e¤orts by the members of an alliance are complementary to each other.
In order to illustrate excludability of alliance memberships, we use Blochís
noncooperative game of sequential coalition formation (1996). Unlike in an
open-membership game analyzed in the companion paper (Konishi and Pan
2019), strong complementarity does not mean a grand alliance, since alliances
can exclude outsiders by limiting membership. We show that there will be only
two asymmetric alliances in which (i) all players belong to one of them, and (ii)
the Örst alliance is larger than the second alliance, when e¤ort complementarity
is large enough. With a small population example, we show that (i) there can
be more than two alliances in equilibrium, and (ii) there can be fringe inactive
players in equilibrium when e¤ort complementarity is not too strong. These
results sheds light on the role of exclusivity in forming alliances in the context
of contest games.

Appendix

We collect all the proofs of lemmas in the text.
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Proof of Lemma 1. We start by di¤erentiating f and g with respect to �x:

@f(x; �x; J + 1)

@�x
=
��J 1

�x�+1 J 1
x�+1�

J 1
�x� +

1
x�

�2 < 0

and

@g(x; �x; J + 1)

@�x
=

��J 1
�x�+1

�
J 1

�x� +
1

x�

�
+
�
J 1

�x� � (J � 1) 1
x�

�
�J 1

�x�+1

x2
�
J 1

�x� +
1

x�

�2

=
��J 1

�x�+1

��
J 1

�x� +
1

x�

�
�
�
J 1

�x� � (J � 1) 1
x�

��
x2
�
J 1

�x� +
1

x�

�2

=
��J 1

�x�+1 � J 1
x�

x2
�
J 1

�x� +
1

x�

�2 < 0

These imply that @u(x;�x;J+1)
@�x

< 0: i.e., a coalitionís payo¤ declines if other
active coalitionsísizes increase.

Di¤erentiating f and g with respect to x, we have

@f(x; �x; J + 1)

@x
=

J

N

(� + 1) 1
x�+2

�
J 1

�x� +
1

x�

�
+ 1

x�+1

�
�� 1

x�+1

��
J 1

�x� +
1

x�

�2

=
J

N

(� + 1) J 1
x�+2

1
�x� +

1
x2�+2�

J 1
�x� +

1
x�

�2 > 0

@g(x; �x; J + 1)

@x
=

(J � 1) �
x�+1 x2

�
J 1

�x� +
1

x�

�
�
�
J 1

�x� � (J � 1) 1
x�

� �
2x
�
J 1

�x� +
1

x�

�
� x2 �

x�+1

�
x4
�
J 1

�x� +
1

x�

�2

=
(J � 1) �

x�+1 x
�
J 1

�x� +
1

x�

�
�
�
J 1

�x� � (J � 1) 1
x�

� �
2
�
J 1

�x� +
1

x�

�
� x �

x�+1

�
x3
�
J 1

�x� +
1

x�

�2

=

�
(J � 1) �

x� � 2
�
J 1

�x� � (J � 1) 1
x�

�� �
J 1

�x� +
1

x�

�
+
�
J 1

�x� � (J � 1) 1
x�

�
�

x�

x3
�
J 1

�x� +
1

x�

�2

=

�
(J � 1) (� + 2) 1

x� � 2J 1
�x�

� �
J 1

�x� +
1

x�

�
+
�
J 1

�x� � (J � 1) 1
x�

�
�

x�

x3
�
J 1

�x� +
1

x�

�2 (4)

Thus, @g(x;�x;J+1)
@x

> 0 (thus @u(x;�x;J+1)
@x

> 0) holds if we have

J � 1
J

�
�x

�x

��

� (2 + �) (J � 1)
2J
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We can relax the su¢ cient upperbound slightly:



respectively. We have

Jx�
2
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