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Abstract

The degree of rigidity of nominal variables is central to many predictions of modern
macroeconomic models. Yet, standard models of price stickiness are at odds with cer-
tain robust empirical facts from micro price datasets. We propose a new, parsimonious



1 Introduction

Macroeconomists have long recognized the crucial role played by the speed of adjustment of

prices in the ampli�cation and propagation of macroeconomic shocks. In particular, there is

ample evidence that ination responds only slowly to monetary shocks (e.g. Christiano et al.

(2005)). In an attempt to better understand the price adjustment frictions underpinning

these aggregate �ndings, numerous studies have turned their attention to micro-level price

datasets and have extracted a variety of additional stylized facts that can help us build more

realistic and robust macroeconomic models. In this paper, we propose a parsimonious new

theory of price rigidity that revolves around a simple reality faced by �rms: the demand for

their product is uncertain. Coupled with ambiguity aversion, this single mechanism does

not only endogenously generate price stickiness, but can also rationalize a number of other

salient pricing facts.

One of the earliest documented empirical facts in the micro price literature is that prices

at the product level tend to be sticky, that is do not change for long periods of time (Bils

and Klenow (2004)). If one plausibly believes that �rms are regularly hit by demand and

cost shocks, in turn altering the pro�t-maximizing price, then �rms would be expected to

update posted prices more often.1 This robust stylized fact led to the widespread use of

both time-dependent (e.g. Calvo (1983), Taylor (1980)) and state-dependent (e.g. menu

cost) price rigidity mechanisms. Yet other facts, such as the surprising stickiness of the set

of prices chosen by �rms over time ( Eichenbaum et al. (2011)), are more di�cult to generate

without expanding the standard models.

In this paper, we propose a single, parsimonious mechanism, built around the idea of

demand uncertainty, that can rationalize these robust empirical facts. In our model, the

economy is composed of a continuum of industries, each populated with monopolistic �rms

that face Knightian uncertainty about their competitive environment. In particular, a �rm

does not know the production function that produces the �nal product of its industry, which

leads to two important implications. First, there is uncertainty about the shape of the �rm’s

demand function, and second, there is uncertainty about the relevant relative price, and how

it relates to the aggregate price index.

Firms understand that the quantity sold is the sum of a temporary, price-insensitive

demand shock and an underlying, time invariant price-sensitive component. They use their

observations of past prices and quantities to learn about the time-invariant component, but

cannot observe the two components separately, only the total quantity sold, and thus face

1Eichenbaum et al. (2011), for example, argue that the large uctuations in quantities sold in weekly
grocery store data in the absence of any price change are indicative of sizable demand shocks.
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ination. Hence, in addition to not knowing the demand function, the �rm is also uncertain

about its appropriate argument.

In this context, the �rm understands that its demand is ambiguous in two dimensions.

First, the demand function itself is ambiguous, and second, the relative price argument

of the function is now also ambiguous. The �rm sets an optimal nominal pricing action

that is robust to this two-dimensional uncertainty. The �rm thus acts as if nature draws

the true DGP to be the relationship between aggregate prices and industry prices that

implies the lowest possible demand for any given combination of the non-ambiguous choice

of the �rm { own nominal price versus the last observed industry price level. The resulting

characteristic of the worst-case relationship is to make the aggregate price not informative

about the unobserved industry price. The nature’s reaction de�nes a worst-case demand

schedule that is a function of this non-ambiguous relative price. Intuitively, the ambiguity

about the industry prices makes one of the arguments of demand ambiguous, and the robust

action is to consider the worst case conditional on the non-ambiguous arguments of demand.

Since the review signals arrive periodically, and when they are unchanged the real rigidity

created by the perceived kinks in demand becomes a nominal one, as in order to keep the

relevant relative price constant, the �rm needs to keep nominal prices constant. This results

in nominal price paths that are sticky, and also resemble infrequently updated \price plans".

Our setup has stark implications about price-setting behavior. The model’s key outcome

is that it endogenously produces a cost of adjusting prices in the form of a higher perceived

uncertainty away from previously posted prices. This is di�erent from standard models where

there is an assumed, exogenous �xed cost of adjustment. Moreover, the single, uncertainty-

based mechanism behind this endogenous cost generates many additional features observed

in micro price data that have proven challenging, if not impossible, for standard price-setting

models to replicate. First, prices in the model can be rigid in the face of shocks despite the

absence of ad hoc costs to changing prices. Second, the �rm �nds it optimal to stick to a

discrete distribution of prices. This implies that unlike standard models, our mechanism

is also compatible with the pricing strategy of many retail �rms to alternate between a

regular and a sale price. Finally, because the cost of moving away from a price is negatively

related to how much information was gleaned from posting it in the past, it is by nature

inherently history and state dependent. As a result, our mechanism not only predicts a

decreasing hazard function of price changes (i.e. the probability of observing a price change

is decreasing in the time since the last price movement), but it can also rationalize the

coexistence of small and large price changes in the data.

The paper is organized as follows. In Section 2, we discuss relation to literature. In

Section 3 we present some motivating evidence. Sections 4 presents a simpli�ed model that
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Sheshinski and Weiss (1977), Rotemberg (1982))4, or a cost of information acquisition present

in more recent models of rational inattention (Woodford (2009)).5 Instead, our model is



and Bergemann and Schlag (2011)), but does not analyze learning about the distributions.

In our focus on learning under ambiguity, we also extend the decision-theoretical framework

of Epstein and Schneider (2007) to learning about functions rather than single parameters.

3 Empirical motivation



equal to 62% when we consider all price changes. Arguably such a high degree of memory

may be due to the tendency of retailers to post similar-sized discounts on a frequent basis.

Yet, even when we �lter out temporary sales, memory probabilities still range between 31%

and 64% across market/category combinations, with a weighted average of 48%.

Another feature is the declining hazard function found in many micro price datasets: the

probability of a price change decreases with the time since the last price reset. As highlighted

by Nakamura and Steinsson (2008) and others, this characteristic represents a challenge to

many popular price-setting mechanisms. Despite the fact that declining hazards can be

found across numerous datasets, some have argued that the �nding could be a by-product

of not taking proper care of heterogeneity: as noted by Klenow and Kryvtsov (2008), "[t]he

declining pooled hazards could simply reect a mix of heterogeneous at hazards, that is,

survivor bias." We �nd, however, that the declining hazard remains a robust �nding in our

dataset, even once we aggressively control for heterogeneity. To construct Figure 1, we

computed the hazard function for each single product in our sample, pooling across retailers

within a speci�c market. Then, we took the median probability of a price change across all

products for each duration. The resulting hazard function is clearly downward sloping. This

is not only an artifact of temporary discounts: the hazard continues to decline beyond the

�rst few weeks, and the overall slope remains negative even if we focus on regular prices.

Standard state-dependent pricing models tend to predict that �rms only reprice when

the optimal price change is su�ciently large. Yet, while it is true that the typical price



nominal and real prices.

There is a single monopolist �rm that each period sells a single good at price Pt: To focus

squarely on the main mechanism, here Pt is expressed in real terms. Later we will extend

the model to account for nominal prices. Denoting by lower-case logs, the �rm’s demand is

determined as

q(pt) = x(pt) + zt; (1)

where we detail below the distributional assumptions on the two components. Having posted

the price Pt; the �rm’s time t realized pro�t is:

�t = (Pt � ect) eq(pt) (2)

where we have assumed a linear cost function, with ct denoting the log time t marginal cost.

The decomposition of demand in (1) serves two modeling purposes. One is to generate

a motive for signal extraction. In this respect, we assume that the �rm only observes total

demand q(pt):, that zt is iid and that x(pt) is constant through time. Thus the role of the

former component is to act as noisy demand realizations that will require the �rm to use the

history of demand realizations q(pt) to learn about x(pt):

The second di�erentiating property is that we assume that the �rm views zt as risky so

that the �rm is fully con�dent that this component is drawn from a unique distribution. In

particular we assume that the �rm knows the true distribution of zt

zt � N(0; �2
z)

and that zt



particular, we consider all Gaussian Processes with a mean function that satis�es

m(p) 2 [l � bp; h � bp]: (3)

This set is motivated as a limit on the ambiguity the �rm faces, and its size will

be calibrated based on what the �rm could reject at standard 5% levels with a small

sample of observations. Intuitively, the interpretation is that while the �rm’s marketing

department provides it with some possible DGPs, it is not con�dent enough to restrict itself

to probabilistically weighing di�erent demand schedules. Moreover, it has no information on

the particular functional form of the possible demand functions, but rather needs to learn

about them by combining a prior from the set �0 with observed signals.

We further specify the set of �0 by studying the limiting case when the covariance

function K goes to zero almost surely. In that case, �0 consists entirely of Dirac measures,

on the space of measurable, downward sloping functions. So that for any given prior �0 2 �0,

there is a unique function x(p



observes the total demand at its posted price q(pt). In addition, the �rm also observes ct+1

and the information set "t is updated with the realization q(pt).

The history of quantities sold acts as noisy signals about the underlying conditional mean

demand x(p). The key distinguishing feature of our �ltering problem is that we allow for

the uncertainty faced by the �rm to be both in the form of risk, i.e. the agent fully trusts

probability distributions, and ambiguity, or Knightian uncertainty, in which the agent does

not have full con�dence in her probability assessments.

4.2 Preferences

The monopolist �rm is owned by an agent that is ambiguity-averse and has recursive multiple

priors utility. The agent values the pro�ts produced by the �rm such that conditional

valuation is de�ned by the recursion

V
�
"t�1; ct

�
= max

pt
min

�2Pt�1("t�1)
E�
�
�("t; ct) + �V

�
"t�1; "t; ct+1

��
; (4)

where �("t; ct) is the per-period pro�t de�ned in (2), being a function of the beginning-of-

period t posted price and end-of-period realized demand q(pt): The �rm builds its conditional

expectations and evaluates expected pro�ts and continuation utility using the worst possible

prior, �0, from the set of admissible priors �0. However, the �rm knows the true transition

process for cost shocks gc(ct+1jct). The recursive formulation ensures that preferences are

dynamically consistent. Axiomatic foundations are in Epstein and Schneider (2003).

The maximization step is over the action of what price Pt to post. The �rm cares about

pro�t which is a function of demand. The �rm also takes into account that the price posted

today reveals information about demand, information that enters as a state variable for next

period’s value function.

The minimization is over the admissible priors, �0, of the demand function x(pt), and

hence over the conditional expectation of demand, further denoted by bx(ptj"t�1;�). This

conditional expectation is a function of the information set "t�1, is computed at a speci�c

price pt and is a function of a speci�c prior, �0. Thus, for a given history "t�1; the

minimization selects the admissible prior that yields the lowest expectation bx(ptj"t�1;�):

In other words, at each point in time, the �rm looks at the historical data and is concerned

that, conditional on posting a price, demand at that price is the lowest possible (subject

to the constraint on prior distributions). The �rm then maximizes over Pt under the beliefbx(ptj"t�1;�min
0 ) evaluated at the worst-case prior �min

0 :
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The minimization step in (4) is relatively easy to solve. We conjecture that the minimizing

�0 is such that, for a given price Pt; it implies that the worst-case expected demand realizationbx(ptj"t�1;�0



only consider the likelihood ratio test done at the price points where the quantities have been

observed. Let P t�1 denote the vector of observed prices in the past. The likelihood ratio



�0 that have survived elimination, both through the statistical or economic steps:

�t�1("t�1) =

( bx(p) : bx(pj) 2 [l � bpj; h � bpj]; LNt�1(Pj)(bx(pj)) � �maxx(pj) LNt�1(Pj)(x(pj))

and x(pj) � x(pk) for 8 pj � pk

)

The set of one-step-ahead conditional beliefs, is thus a set Pt�1 ("t�1) of normal distributions

Pt�1

�
"t�1

�
=�1 1



intersection

[ � bp0 � ��z;  � bp0 + ��z] \ [ � bp0 + ( � ��) b�N ;  � bp0 + ( + ��) b�N ] (8)

The intersection in (8) results in a non-empty set if and only if

j j � �
p
N + �� (9)

Clearly the restriction is most binding for N = 1; which says that the sample mean should

not to be too large so that even the lower bound of the desired con�dence interval becomes

larger than the prior upper bound, and, reversely that it’s not too low. For example, if

�� = � = 1:96 then j j < 2�1:96: The restriction is more likely to be satis�ed as N is larger.

To complete the description of the learning process, consider the case in which the

intersection in (8) results in an empty set. This is a situation in which the con�dence interval

around the observed average demand is too narrow to intersect the prior tunnel. Since the

decision-maker only considers demand schedules in the latter, he treats the observed demand

as unlikely until it intersects at least in one point the prior tunnel. This means that the

critical value �� is increased until it reaches j j � �
p
N; so that condition (9) is satis�ed.

The worst-case demand x�(p0) is the minimum of the demands that survive the re-

evaluation step:

x�(p0)j (bqN(p0)) = maxf � bp0 � ��z;  � bp0 + ( � ��) b�Ng (10)

Intuitively, the worst-case demand can be the lower bound of the con�dence interval if

the lower bound of the con�dence interval is above the lower bound of the prior tunnel, a

condition summarized by:

� > (�� �  ) =
p
N (11)

This is more likely to happen if the con�dence interval is narrower, which is determined by

a larger N and a smaller critical value ��; if the average demand is larger, through a higher

 ; and if the prior tunnel is wider, controlled by a larger �. The worst-case demand instead

can remain to be the initial one,  � bp0 � ��z; if the opposite condition holds.

Having determined the worst-case x�(p0); we can �nd the solution to the rest of the

demand curve. In particular, for prices higher than p0 the worst-case posterior is the worst-

case prior

x�(p0)j (bqN(p0)) =  � bp0 � ��z for 8 p0 > p0
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For prices lower than p0; there is a threshold p2( ;N); characterized by

 � ��z � bp2 =  � bp0 + ( � ��) b�N
at which demand under the initial worst-case demand, given by the left hand side, equals

the lower bound of the demand at the observed price p0: For prices between p2( ;N) and p0

the worst-case posterior is higher than the worst-case prior because of the downward sloping

curve restriction. In fact, in that case the lowest demand that satis�es the weak monotonicity

is the worst-case demand at x�(p0): For prices below p2( ;N); the worst-case is restricted

now by the worst-case prior.

To summarize, having observed bqN(p0); the worst-case demand is:

x�(p0) � minx(p0)j (bqN(p0)) =

(
max f � bp0 � ��z; x�(p0)j (bqN(p0))g for p0 � p0

 � bp0 � ��z for p0 > p0

)
(12)

where x�(p0)j (bqN(p0)) is given by (10).

4.4.1 Kinked expected demand

The important property of the learning process is that it can generate kinks at the observed

prices. Indeed, the worst-case expected demand in (12) has a kink at p0; as long as (11) is

satis�ed. Figure 2 is an example of a plot for x�(p0) for the above situation, where P0 = 1;bqN(p0) is given by the demand under the true DGP, i.e.  = 0; and condition (11) is

satis�ed, so that the lower bound of the con�dence interval is above the lower bound of the

prior tunnel. The function has in fact two kinks, at P0 and P2( ;N):

The kink generated at the observed P0 can obviously create price stickiness. If the �rm

considers increasing the price, it will act as if the expected demand is given by the lower

bound of the prior tunnel, which is characterized by a discrete jump down from P0: If

conversely, it considers decreasing the price, on the interval (p2( ;N); p0); then the �rm acts

as if there is no gain in demand and thus it is not optimal to lower there the price.

The intuition behind the kinked expected demand is the following. The �rm does not

restrict demand to be part of a particular parametric family of functions, hence observations

are useful mostly in updating expected demand locally, not globally. As the �rm gathers

information at one price, it is becoming increasingly con�dent about the demand there.

Speci�cally, as the number of those observations increases, the con�dence interval shrinks

to the point the �rm is convinced by the observed data that the demand is very likely to be

above its initial worst-case belief. However, due to the non-parametric stance on the demand
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schedules, having observed demand at that price puts only a few restriction on the possible

values demand takes away from that point.

The �rm updates its view on the demand at the rest of the price support by considering

bounds on what the new information implies. In particular, demand cannot decrease to the

left of the observed price and it can fall up to the initial worst-case bound for higher prices.

By considering the whole set of prior demand schedules that are consistent with the observed

data, the �rm acts as if there is a kink at the observed price. At this price the �rm looks,

from the perspective of an econometrician, as being more optimistic about demand than at

other prices. Once the expected demand has a kink, it is then clear that for a range of small

enough cost shocks it is optimal for the �rm not to change its price.

To showcase the model counterpart of expected utility, we can consider several compar-

isons. The starkest one is that where the agent knows the true DGP in (5). In this case the

expected demand is smooth everywhere and the optimal price is the solution to

max



4.5 Key modeling ingredients

There are two key modeling ingredients for our mechanism of rigidity. The �rst one is

the non-parametric nature of learning. The role of this ingredient is to make uncertainty

reduction local in nature. As described above, a simple parametric view on demand, such as

learning about a linear demand curve, does not generate kinks. Here, instead, our mechanism

emphasizes the plausible feature that the strongest reduction in uncertainty occurs at the

prices that have been actually posted. The second ingredient is that this uncertainty should

ultimately matter for decision so the mechanism requires some uncertainty aversion. The

objective is to have a lower certainty equivalent of the price associated with the higher

uncertainty.

These two ingredients can be potentially implemented in di�erent environments of

uncertainty. The �rst is within the expected utility framework, where uncertainty is

limited to risk in the form of a unique prior. There, one needs to characterize the entire

posterior distribution over functions, a challenging task even for high-level non-parametric

econometrics.13 Importantly, in terms of the economics behind the mechanism, to generate

the local reduction in uncertainty, the initial prior over functions needs to include some a-

priori demand non-di�erentiability. Finally, the latter non-di�erentiability can generate a

kink in the demand variance that would need to be accompanied by risk aversion to have an

e�ect on the pricing decisions.

In this paper we have taken a di�erent approach, namely to use a model of learning under

ambiguity. The di�erence, and in many aspects the advantage, compared to the expected

utility case, is that the �rm needs to characterize only the worst-case demand, and not the

whole set of posterior beliefs. In addition, the �rm does not need a-priori demand non-

di�erentiability in the prior set of entertained functions in order to generate kinks. Instead,

the non-di�erentiability comes entirely from the ambiguity aversion, which generates a kink

in the expected demand from the switch in the worst-case beliefs.

It is useful to note in this context that the prior set �0 that we describe contains functions

that do not have restrictions on their derivatives. That is the reason why the worst-case

demand can range from being locally at or vertical, as long as it belongs to the prior tunnel.

This lack of additional restrictions is done here for simplicity. We could impose limits on the

derivatives of the demand functions but that would come at the cost of a more convoluted

characterization of the updated set of likely demands. Importantly, imposing limits on the

derivatives would still lead to a non-di�erentiability in the worst-case demand. Intuitively,

when the �rm entertains setting a higher price than the one for which demand is known, it

13See Ichimura and Todd (2007) for a survey of semi- and non-parametric estimators and Blundell et al.
(2008) for a recent contribution on non-parametric estimation of demand curves.
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is worried about an elastic demand, with potentially some bounds on those elasticities. This

belief switches, and creates a kink in the perceived derivative of the demand function, when

the �rm considers setting a lower price, for which the worst-case is a more inelastic demand.

5 Optimal pricing

5.1 A static optimization problem

In this subsection we describe a static version of the pro�t maximization. In particular ,at

the beginning of each period t;



is the rational expectations price, as in (14): PRE
t = �Ct, where � � b=(b�1) is the markup.

The reason is that, even if the �rm prices under the lower bound of the prior tunnel, we

have assumed that there is the same elasticity as under the true DGP. Moreover, the optimal

price will not be p 2 [p2( ;N); p0) as the demand is the same at that interval but the price

is highest at p0: So, we only need to compute the pro�t at P0 and compare it to that arising

from setting the RE one. The former is:

�(Pt = P0) = e0:5�2
z (P0 � Ct) eqN (p0)

For ease of exposition, de�ne a hypothetical value of cost C0 � P0=�; for which the price P0

would be the optimal RE price. The pro�t can be rewritten as

�(Pt = P0) = e0:5�2
z+���z

�
C0

Ct
�� 1

�
Ct (�Ct)

�b
�
�
C0

Ct

��b
e�(p0) (15)

The pro�t at a RE price simply sets C0 = Ct and �(p0) = 0 in (15), so that

�(Pt = PRE
t ) = e0:5�2

z+���z (�� 1)



Because the above conclusion is drawn on a second order approximation of h(rct ), the

range for which there is stickiness is symmetric. We can check the third derivative of h and

�nd that it adds the term �2
3
b (b� 2) (rct �1)3. Thus, if b > 2 (a condition easily satis�ed by

empirically reasonable values), the function is lower (higher) for the higher (smaller) root rc2

(rc1). So the nonlinear function h(rct ) will intersect zero at values that are both smaller than

the corresponding rc1;2: This shows that there is asymmetry: the inaction region is longer to

the left than to the right so that there is a more likely pass through for positive cost shocks

than negative ones. The intuition is that the pro�t function is more sensitive to higher cost

shocks: if the �rm does not change its price it su�ers more from the loss in markup than if

it considers symmetric lower cost shocks.

5.2 Dynamics: a three-period model

In our model the observations in the information set depend on actions. Indeed, posting

di�erent prices leads to noisy signals about di�erent parts of the unknown demand schedule.

Thus, this becomes a dynamic problem in that choosing a price not only leads to static

pro�ts but to future bene�ts in the form of learning demand. This inuence goes through

two e�ects: one is deterministic, by increasing the number of times at which the posted price

is observed. The second is through the random innovation that will be observed at the end

of the period: The former e�ect arises in this model from the presence of ambiguity. The

second is more general, appearing also in dynamic problems with experimentation as in the

multi-arm bandit problems.

Solving fully optimal learning problems while allowing for experimentation is a di�cult

numerical task. The main computational problem here is that the state space explodes as

the number of posted prices increases with time. For this reason we take the approach of

studying a three-period model, described below, such that in the last period there are only

static pro�ts to be gained and no continuation utility. We believe that even the three-period

model with learning is rich enough to capture most of the important e�ects of the many,

possibly in�nite, periods version of the dynamic model.

There are three periods. Let us start from the beginning of the second period, when

the �rm starts with the information from previously observed demand realizations, denoted

below by "1. At this point in time, the �rm also knows the cost c2:

The dynamic problem of the �rm is to choose the optimal price P2 that maximizes the
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worst-case expectation of the discounted sum of the second and third period pro�ts:

max
P2

min
�2P1("1)

E�
h
(P2 � C2) ex(p2j"1)+z2 + ��(P �3 )

i
(18)

where P �3 denotes the optimal price set in period 3, conditional on the "1 and the new

demand signal q(p2) realized at the end of period 2 at the price P2; E� denotes the worst-

case conditional expectation, which uses the estimate of demand x�(p2j"1):

The third period problem is a static maximization, characterized in section 5.1:

�(P �3 ) = max
P3

min
�2P2("1;q(p2))

E� (P3 � C3) ex(p3j"1;q(p2))+z3 (19)

The �rst period consists of letting the �rm choose the prices that act as the initial state

variable in the problem described above. This allows us to study what would be the price

in which the �rm would mostly invest knowing about.

5.2.1 Parametrization

Here we are interested in illustrating the main mechanisms of the model. It is important to

note that we do not have a discrete space for the cost as that may mechanically generate

discreteness in prices even in a standard model. The Markov process for the cost shock is

ct � c = �c (ct�1 � c) + �c�
c
t

where �ct is white noise. The benchmark parametrization is in Table 1. We set b = 6, the

constant  = 0 and the critical value �� = 1:96; which corresponds to a 95% con�dence

interval. We set the cost shock parameters �c and �c to values calculated by Eichenbaum

et al. (2011), where they observe marginal costs. We normalize c = (b � 1)=b so that

PRE = 1: We set the discount factor � = 0:99[1 � (1 � e�1=30)]; where the second part of

the discounting models that a ’pricing regime’ lasts on average 30 weeks in the data, as

documented by Stevens (2014). We are left with setting the width of the worst-case prior

tunnel. Here we set � = 2; which is argued in Ilut and Schneider (2014) as a reasonable upper

bound on ambiguity, and explore with setting the standard deviation of demand shocks �z:

Table 1: Calibrated parameters
b  �� �c �c � �z �



5.3 Results

Worst-case expected demand

We �rst plot the worst-case expected average demand for the case where the �rm has

observed only one price, namely p1 = 0; in Figure 2. The blue solid lines represent the

bounds on the prior tunnel, the blue dotted line is the true DGP, the red cross is the average

demand observed at p1; and the red vertical line denotes the 95% con�dence interval around

it. The black line plots the worst-case demand, having observed that information, which

forms an obvious kink at p1:

To illustrate the role of certainty, in �gure 3, we increase the number of times for which the



Experimentation

Figure 8 plots the pricing policy of period 2; where the �rm has observed the price p1 and

takes into account the e�ect of its pricing decision on the future valuation. This is marked

by the dark solid line. In comparison to a static optimization, the dynamic one features even

more stickiness, especially for higher cost shocks.

Accounting for active learning has two competing e�ects. On the one hand, by sticking

to the same price, the �rm gets to learn more about it. On the other hand, by moving to

another price it can expect to learn something new and potentially valuable. Which force

dominates depends on state variables. Figure 9 is an example of the former e�ect being

stronger, which leads to more stickiness than the static policy function. To further explore

this, we compute the policy function in the case where �rm will repeat the static last period

problem forever, without ever updating its information set again. The continuation value

in this case is the present discounted value of the stream of expected pro�ts from the third

period, but all this changes is the discount factor, increasing it to e� = �=(1��): The policy

function is shown in Figure 9. Not surprisingly, this only increases stickiness. In these cases

gaining more information about where the �rm currently stands is important for the future

problem, and outweighs any experimentation incentives. This is because the observed price

is right at the median and would be close to the optimal price if the �rm receives a cost

shock close to the mean - that is where the bulk of future realizations of cost are likely to

be anyway, hence learning about this part of the demand curve is useful.

To showcase experimentation and the role of the state variables, we now assume that the

observed price p1 is not the median price but corresponds to the 25th percentile of the cost

distribution. Figure 10 plots this case and illustrates that this is not a very useful price to

learn at. The �rm is not likely to choose again to pick such a low price unless it gets very

low cost shock realizations and thus it �nds it optimal to move earlier away from it so that

there is less stickiness to the right of p1: This is a case where the incentive to experiment

rather than to learn more at the same price wins out. This e�ect is magni�ed in the case

where the relevant discount factor is increased to e�; as shown in Figure 11.

These pricing policies are taking as given an initial price p1:Due to our three-period setup

we can ask what is the initial price, or prices, that the �rm would like most to know about.





6 Nominal Rigidity

The model presented so far was one of real rigidity, in which P is interpreted as a real price.

In particular, there was nothing that prevented nominal adjustments. For example if the

�rm knew that the aggregate price level had shifted, it could exactly change its nominal

price to achieve the same real price and stay at the \safe" place.

We structure this section as follows. First, we enrich the model so as to make a distinction

between real and nominal prices. We show how nominal rigidity arises as a result of the

interaction of demand uncertainty with the uncertainty about the relevant relative price.

The model consists of monopolistically competitive �rms that sell to a �nal good industry.

The �rm’s demand is thus a function of the technology of its industry and of the relevant

relative price, equal to the ratio of its nominal price against the industry price index.

We assume that the monopolistically competitive �rm does not know the technology of

its industry and is ambiguous about it. This leads to ambiguous beliefs about the relevant

industry price level, and thus about the demand-relevant relative price. As a result, in

addition to not knowing the demand curve, the �rm is uncertain about its appropriate

relative price argument. Thus, the �rm faces two dimensions of ambiguity { the demand

function itself is ambiguous, and its argument is ambiguous. The �rm sets an optimal

nominal pricing action that is robust to both. We show that this turns the real rigidity

generated in the previous section into nominal rigidity.

Second, we provide empirical evidence based on US data for the time-variation of the

relationship between aggregate and industry prices. Here we discuss the lack of statistical

con�dence that an econometrician has, when estimating this time-variation at di�erent

horizons, in rejecting the null hypothesis that aggregate prices are not informative about

industry prices. Thus, consistent with the approach that resulted in real rigidity, the �rm is

now also put on equal footing to the econometrician that cannot easily reject the fact that

aggregate prices are typically not a useful signal about the relevant relative price.

6.1 Economic Framework

There is a continuum of industries indexed by j and a representative household that consumes

a CES basket of the goods produced by the di�erent industries:

Ct =

�Z
C

b�1



This �nal good demand de�nes the aggregate price index Pt

Pt =

�Z
P 1�b
jt dj

� 1
1�b

(21)

where Pjt are the price indices of the separate industries.

Our preferred interpretation of this setup is that the �nal household consumes di�erent

types of �nal goods that are produced by industries with potentially di�erent structures.14

Each industry j has a representative �nal goods �rm, which produces its good by aggregating

over intermediate goods i with the technology

Cjt = f�1
j

�Z
fj(Cijt)vj(zit)di

�
(22)

where zit is an idiosyncratic demand shock for the good i, distributed as N(0; �2
z). Each

industry j has potentially di�erent functions fj and vj, and price index Pjt such that

PjtCjt =

Z
PitCijtdi

where Cijt is the amount purchased of good variety i by industry j. Solving the cost

minimization problem of the representative �rm in industry j yields

Cijt = f 0�1
j

�
Pit
Pjt

f 0 (Cjt)

v(zit)

�
� Hj

�
Pit
Pjt

; Cjt; zit

�
(23)

The demand of industry j for a given intermediate good i is a function of the relevant

relative price, Pit
Pjt

, overall industry output Cjt, and demand shocks zit. We denote this

function by Hj and note that it is a transformation of the functions fj and N





We assume that the �rm has a prior belief that the function hj is such that

h(r) 2 [� � br;  � br];

and hence lies in the type of a prior tunnel studied previously. The function is ambiguous,

and we will again focus on the limiting case of Delta priors where each prior awards one

possible function probability 1, and all others probability 0. The admissible functions are

all weakly decreasing functions that fall in the tunnel above.

There are two sources of uncertainty in demand { uncertainty about the shape of demand,

h(:), and uncertainty about the relevant price index pjt. Uncertainty about demand is going

to be handled in a manner very similar to the previous discussion on real rigidity, hence next

we turn to the uncertainty about pjt.

6.3 Uncertainty about the relationship with aggregate prices



where pjs



con�dent in extrapolating this long-run relation to short-run uctuations, and entertains

functions �(:) which allow for a variety of local, possibly time-varying relationships. This

is meant to capture the empirical regularity that estimates of the short-run relationship

between disaggregated ination indices and overall ination are imprecise and appear to be

time-varying, but estimates on long-run ination series con�dently point towards cointegra-

tion. The �rm has no advantage over real-world econometricians and cannot eliminate the

uncertainty in the short-run ination relationship by postulating a single, linear cointegrating

relationship with full certainty. Thus, our set of priors explicitly allows for the possibility

that the current short-run relationship is weak, even though in the long-run the �rm expects

prices to rise in lock-step.

For tractability, we focus on the limiting case where the variance function of the GP

distributions goes to zero, so conditional on a prior, one function �(:) has probability 1 and

all others probability zero.

6.3.1 Worst-case beliefs

The unknown portion of the �rm’s demand can be written as

h(r̂it � �(pt � pjs)� �jt)� b(�(pt � pjs) + �jt);

where r̂it = pit � pjs, and is a function of two unknown functions: h(:) and �(:). The �rm

understands that its demand is ambiguous in two dimensions. First, the functional form of

the industry demand function h(:) is ambiguous, and second the argument of the function,

the relevant relative price, is also ambiguous. The �rm chooses an optimal pricing action, r̂it,

that is robust to both sources of ambiguity. This amounts to choosing a pro�t maximizing

price, under the worst-case demand schedule, where worst-case demand is determined price-

by-price, i.e. conditional on any given pricing action r̂it.

For each admissible demand shape h(:) and pricing action r̂it, we can �nd a worst-case

cointegrating relationship �(:) that yields the worst demand:

h�(r̂it; �jt) = min
�
h(r̂it � �(pt � pjs)� �jt)� b(�(pt � pjs) + �jt) (29)

This is the demand level that would prevail if nature draws the worst possible �(:),

conditional on a particular choice of h(:) and price r̂it. Note that in the short run �(pt�pjs) 2
[�p; p], and hence variation in pt does not change the set of possible numerical values that

could be realized through �(pt � pjs). Hence the minimization can equivalently be recast

in terms of minimizing over a parameter, �� 2 [�t; p], which represents the conditional
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expectation of pjt. Since movements in pt do not a�ect the minimization problem, the

solution is given by

��(pt � pjs) = ��

Intuitively, the worst-case cointegrating relationship implies that movements in the

aggregate price are not informative about the industry prices in the short-run. This is

because when there is no such informative relationship, nature is free to choose the worst

possible expectation of pjt, given a demand function h(:) and price choice r̂it.

Since the transitory shocks �jt are not observed, we can also take an expectation over

them and de�ne the expected h�:

x(r̂it) = Et(h
�(r̂it; �jt))

This is the object that the �rm can learn about through its past prices and quantities,

since according to the optimal behavior under ambiguity, it believes that nature has mini-

mized demand in this same fashion at any point in time. For tractability, we assume that

the implied expectational errors follow a normal distribution,

h�(r̂it; �jt) = x(r̂it) + "it; "it � N(0; �2
"); (30)

6.3.2 Signals on relevant relative price

Finally, we assume that the �rm performs reviews on a �xed schedule, with a new signal

arriving every T periods. The idea is that reviews are costly and time consuming and cannot

be done every period, but since they are useful, they are done on a regular basis. We do not

model the microfoundations of the review selection process, but rather view the assumption

of a new review every T periods as a convenient way to model the salient features of what

happens in practice.18

Given this structure of signal arrival, the beliefs of the �rm about future signals evolve

as follows. Every T periods the �rm’s beliefs get recentered at the true value of the industry

price, hence if there is a review at time t, then Et(pjt) = pjt: The �rm expects that the signal

18



at the next review is given by

Et(pj;t+T ) = pjs + min
�2��

Et(�(pt+T � pjs));

which only serves to shift the expected nominal price needed to achieve some desired relative

prices from period t+ T onwards.

6.3.3 Nominal rigidity from real rigidity

The �rm uses past signals to learn about the worst-case demand. Putting together (26) and

(30), the demand facing the �rm is

yit = x(r̂it) + ct + b(pt � pjs) + "it + zit (31)

which is a known function of the observed aggregates, namely price pt and quantity ct, an

unknown function x(:) of its perceived relevant relative price and Gaussian noise. This forms





�j;k;t, based on the information of the whole sample of size N .20 Similarly, it produces the

smoothed estimate of the uncertainty �j;k;tjN around that estimate. Thus, the conditional

time-t distribution is given by

�j;k;t � N(b�j;k;tjN ;�j;k;tjN)

For a pair (j; k), we analyze the sample path of the estimate b�j;k;tjN and its uncertainty

�j;k;tjN . We analyze how often we cannot reject the null that b�j;k;tjN equals zero at some

con�dence value. De�ne that fraction of times, out of the whole sample, to be nj;k: For a

given horizon k; we vary the industries j and denote the average over nj;k as nk: Finally, we

vary the horizon k and collect the resulting nk: We interpret the measure nk as the strength

of statistical evidence for the �rm to consider it reasonable to believe that within the horizon

given by k; the relation of aggregate ination to industry ination is typically zero.

We �rst plot the estimated distribution of �j;k;t for the Carbonated drinks industry,

which turns out to be a typical industry for our results. In particular, Figures 15 to 22

plot the estimate b�j;k;tjN and the 95% con�dence interval around it based on the estimated

uncertainty �j;k;tjN ; for various ination horizons, ranging from 1 to 3, 6, 12, 24, 36, 48 and

60 months.

The pictures show that for short horizons it is typical that we cannot reject the null of no

predictive content from aggregate ination for the evolution of industry-level ination. Not

surprisingly, the relationship becomes more signi�cant as the horizon lengthens. In addition,

there is a lot of time-variation in the estimated e�ect. This type of evidence supports the

idea that the �rm considers a wide set of beliefs about the short-run relationship between the

two measures of ination. As in our model, this set shrinks for the longer-run relationship.

Figure 23 plots the value of nj;k; de�ned above, and shows that the fraction of times that we

cannot reject the null of b�j;k;tjN = 0 is indeed high at most horizons and decreases with the

horizon.21

We �nd similar patterns when we repeat this analysis over industries. Figure 24 plots the

value nk; de�ned above, and shows that on average an econometrician cannot reject the null

of zero e�ect of aggregate ination for a fraction of times that decreases with the horizon,

from about 75% at 1 month to about 20% even for 5 years.

20Alternatively, we could have reported the conditional moments based only on information up to time t.
Instead, we give the econometrician the most available data, in the form of information on the whole sample,
and report the results based on the Kalman smoother.

21The 14 horizons correspond to 1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 42, 48 and 60 months.
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7 Quantitative model

We build a quantitative model with nominal prices. The model uses the same layers of

production as in the description of the nominal rigidity section but it now expands by

endogenizing marginal costs and introducing a law of motion for the aggregate price level.

The model is intended for studying, through a more quantitative lens, the individual decision

problem of an ambiguity averse �rm that faces demand uncertainty. Because we focus on

the individual behavior, a more precise way to view the setup analyzed here is to consider it

as general equilibrium model with a measure zero of myopic, ambiguity averse �rms. This

means that the aggregate variables follow their exible, rational expectations law of motion.

7.1 Model setup

As described in section 6, there are three layers of production: First, there is a unit interval

of continuum of intermediate monopolistic �rms indexed by i, where each �rm sells a

di�erentiated product. They sell to industries, indexed by j: Second, an industry buys

from monopolistic �rms and sells to a �nal good producer. The industries are competitive

�rms. Third, there is a �rm producing a �nal good to be sold to the representative consumer.

7.1.1 Agents and shocks

Representative agent

There is a representative household that consumes and works, whose problem is

max
X

�t
�
logCt � �

Z
Li;tdi

�
subject to the budget constraintZ

Pj;tCjtdj + Etqt+1bt+1 = bt +Wt

Z
Li;tdi+

Z
�i;tdi

where qt+1 is the stochastic discount factor, bt+1 is state contingent claims on aggregate

shock, �i;t is the pro�t from the monopolistic intermediaries and consumption integrates over

the varieties produced by industries j with a CES aggregator with elasticity b as shown in

(20). The solution to the cost minimization problem of the representative agent is to demand

from each industry the amount given by (24).
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The j � th industry

The technology and resulting cost minimization solution of the j � th industry are

described by equations (22) and (23). The industries are competitive in producing the j

good. They do not exploit the demand for their variety j by the representative consumer,

and make zero pro�ts.

The i� th monopolistic �rm

The demand for the monopolistic �rm i comes from the industry j in the form of (23)

which we have further restricted to be described in (25) as

Yi;t = Hj

�
Pit
Pjt

��
Pjt
Pt

��b
Ct exp(zit)

The �rm produces variety i using the production function:

Yi;t = !itAtLit

where !it and At are an idiosyncratic and aggregate productivity shock, respectively, and

Lit is hours hired by �rm i at wage Wt: The processes for these shocks are:

log!it = �! log!it�1 + "!i;t

logAt = �a logAt�1 + "at

where "!i;t is iid N(0; �2
� ) and "at is iid N(0; �2

a): The real ow pro�ts are therefore:

�i;t =

�
Pit
Pt
� Wt

!itAtPt

�
Yi;t



where �st is iid N(0; �2
s):

In turn, we can use the optimal hours decision of the household to substitute out for Wt:

Wt

Pt
= �Ct

so that the real ow pro�ts can be written as

�i;t =

�
Pit
Pt
� �St
!itAtPt

�
Yi;t (34)

7.1.2 Demand uncertainty

True data generating process

We �rst characterize the determination of demand under the true data generating process

(DGP). We use a simple true DGP: each industry type j has the same CES function fj and

vj in (22) of the form

fj(Cijt) = C
b�1
b

ijt ; vj(zit) = z
1=b
it

These standard CES aggregators imply the following demand for intermediate good i :

Cj;i;t = Cjt"it

�
Pi;t

P j;t

��b
Thus, under the true DGP, the demand function is simply

yit = �bpi;t + ct + bpt + zit (35)

Notice that the whole layer of industry demand has dissapeared in this DGP. This was done

on purpose for the simplicity of the model. However, the monopolistic �rm retains all the

uncertainty about the direct competitors, reected in the unknown, relevant price pj;t:

Monopolistic �rm’s information

As in section 6, we assume that the �rm observes the aggregate Pt and Ct, but not its

demand function. The learning process is exactly the same as described previously in section

6, where equation (31) gives the demand to be estimated as

yit = x(^.9552 Tf 3.556 1.794 Td [(P)]TJ/Fb81 Tf 5.70



x(r̂it) is:

x(r̂it) 2 [� �



the static pro�t, which in this case is

�MC
i;t =

�
Pit
Pt
� �St
!itAtPt

�
Yi;t � fWtIPit 6=Pit�1

(39)

where the latter term reect the menu cost expressed in wages paid. The objective of this

comparison is to help us understand what does the new type of cost of not changing the

price proposed in this paper brings compared to the standard menu cost.

Reset shocks

Because we have modeled so far that the price-sensitive component of demand x(r̂it)

is constant through time, the �rm can in principle learn it perfectly as it accumulates

new information. However, it is plausible that the �rm is concerned that the underlying

demand shifts and thus it has to start learning it again. We model the decay in the

informational content of observation by introducing shocks to this learning capital, which

we call ’reset shocks’. The interpretation of this shock is that there are events that change

the competitive landscape of the �rm, such as for example the entrance/exit of competitors,

the inow/outow of customers. The �rm �nds these situations as resetting the information

it has accumulated.

A reset event happens with a constant probability  and for all prices it increases the

con�dence interval for the expected demand. The reset shock brings the posterior estimates

closer to the prior, i.e. it makes the past learning less useful. In particular, for each relative

price rn that has been observed, the reset shock expands its con�dence interval. For example,

if before the shock

x(r0) 2 [bqN(r0)� ��
�zp
N(r0)

; bqN(r0) + ��
�zp
N(r0)

]

with the reset shock being realized the new true demand is shifted around each element of

x(r0) by ex(r0) = x(r0)� � �zp
N(r0)

where � is a parameter. At the moment of the shock, this is equivalent to �nding a fraction

 of the N(r0) which is used in computing the 95% con�dence interval:

(�� + �)
�zp
N(r0)

= ��
�zp
 N(r0)

;  =

�
�

� + �

�2

< 1

So, conditional on a reset shock, we can reparametrize � by modeling the state variables

N(rn) of the �rm as becoming  N(rn); where  



For example,  can be equal to 0 such that the �rm discounts all the past information.

Everything else in the analysis proceeds as before.

We assume that the �rm does not observe the reset shock. This means that past

information N(rn) decays deterministically at rate ’ � (1�  +  ) :24 The �rst component

is the probability that a shock has not hit and the second is the amount of loss in information

conditional on a shock. In this case, the state variable entering period t that captures the

’information relevant’ number of times, eNt�1(r); for which a �rm has observed a price r is

computed recursively as eNt(r) = ’
� eNt�1(r) + Irt-fore.



We are left with 7 parameters that refer to the �rm’s problem. We start by choosing an

elasticity of substitution of b = 6; implying a markup of 20%. We set the critical value used

in the statistical evaluation step �� = 1:96; corresponding to a 95% con�dence interval.

There are thus 5 parameters left. For this we use pricing and quantity moments based

on the IRI Marketing Dataset, as described in section 3. First, we calibrate the standard

deviation of demand shocks �z using empirical evidence on how di�cult is it to predict

the one-period-ahead quantity. In particular, using our dataset we run linear regressions of

log(Q) on a vector of controls X, that include: 2 lags of log(Q); log(P ) plus its own 2 lags,

the weighted average of weekly prices in that category and its 2 lags as well as item and store

dummies. We do this across all items within a category/market and also for the item with

most sales in its category. We compute the absolute in-sample prediction error (Q�X b�)=Q;

where b� are the regression coe�cients based on the regression and Q is the mean quantity.

Table 4 reports the results for the moments of the prediction error of these types of

regression. We �nd that the median absolute ranges from 18% to 48% of the average quantity.

We calibrate �z to generate a similar median error for the prediction of quantity under the

true DGP of our model. For the benchmark model we use �z = 0:5; which corresponds to a

median forecast error of 0:50 � 0:675 = 0:3375; matching our sample average.25

The persistence and standard deviation of the idiosyncratic productivity are parameters

that are standard in menu cost models. That literature suggests using pricing moments such

as the fraction of price increases and the average size of price changes to calibrate them

(see for example Vavra (2014)). There are 2 parameters that are speci�c to the learning

model proposed here. The �rst one is the width of prior tunnel, controlled by �; which is the

multiple of standard deviations that the �rm uses to form the initial set of possible demand.

The second one is the rate of information decay, ’; necessary for the model to not collapse

to full information about the true DGP.

For the two learning parameters we �nd it informative to use the following two pricing

moments: the frequency of posted price changes and the frequency of ’reference price’

changes. As in Gagnon et al. (2012), we de�ne a ’reference price’ the modal price within

a rolling window of 13-weeks. The ambiguity parameter comes out at making the width of

the prior tunnel equal to plus-minus two standard deviations of the demand shock, a bound

argued as reasonable in Ilut and Schneider (2014). Finally, for the menu-cost model, where

the information parameters � and ’ do not matter, we calibrate f to the same frequency of

posted price changes, conditional on the rest of the structural parameters being the same as

in the ambiguity model. Table 2 presents the whole set of parameters.

25Here we used that �(�0:6745) = 0:25; with �(:) denoting the standard normal cdf.
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Table 2: Parameters



the modal price, have no price memory and are less discrete within a speci�c time-window.

Figure 25 plots the histogram of the price changes implied by, respectively, the ambiguity

and menu cost models. The latter produces a bimodal distribution, typical for menu cost

models. Compared to this, the ambiguity model produces both a bigger mass of small

price changes and a bigger mass of large price changes. Figure 26 plots the distribution of

price changes for a ‘typical’ category/market in our dataset, namely salted snacks in New

York. While some of the larger spikes can be attributed to ‘sales’, the data indicates a high

frequency of both large and small price changes.26

The reason for generating larger price changes is the existence of kinks in the policy

function and the resulting potential for frequent, large price changes as the �rm switches

between the prices at those kinks. Small price changes are generated because the policy

function resembles the exible price policy in some situations. On the one hand, this can

happen because the history of shocks macy



in the case plotted in Figure 32 to ten, the kinks become deeper. In this situation we will

mostly observe few and large (discrete) price changes, with switches to and from the two

kinks. Moreover, even in this situation, the �rm may choose small price changes in the areas

further away from the kinks.

Of particular interest, from the perspective of monetary non-neutrality, is the optimal

pricing behavior as a function of monetary policy shocks. We de�ne here the degree of

monetary neutrality as the e�ect of the monetary policy shock on the quantity sold, which

can be read o� from the deviation of the optimal price from its exible version. Figure 33

plots pricing policies in the case of one previously observed price. Compared to the menu cost

version, the implied inaction is smaller and thus the monetary neutrality stronger. As we

increase the number of times that this price has been observed, the inaction region becomes

wider, to the extent that it generates more stickiness than the menu cost version, as shown

in Figure 34, which plots the case of ten such previous observations.

Having multiple observed prices leads to di�erent e�ects of monetary shocks. Figure 35

plots the case in which two previous prices have been observed once each. We see that there



too high compared to the exible price and the �rm sells on average less. However, after the

switch to the low value, the �rm prices at a markup below the exible one and in the process

sells more on average. As the monetary shock becomes increasingly negative the �rm sticks

to this price which eventually will lower again its quantity below its exible version. As the

inaction region extends further to the left than the menu cost version, this negative e�ect

on quantity will be signi�cant even for large negative shocks.

To summarize, monetary policy shocks lead to e�ects on optimal prices that are history

and size dependent. History matters because it a�ects where in the state space the kinks

are formed and how large they are. For example, there may be a history of shocks, either

idiosyncratic or aggregate, that has lead the �rm to optimally select prices that implies

larger kinks. Following such a history, the �rm will behave as if there are signi�cant

costs of changing its nominal price, together with potentially strong memory in its price.

Alternatively, the �rm may �nd itself in a situation where these kinks are much smaller, and

as such monetary non-neutrality is likely to be small. At the same time, for a given history,

the current size of the shock matters through the standard e�ect of pulling the optimal

price out of an inaction area. However, when there are multiple kinks, the qualitative

and quantitative e�ect on the sign on the average quantity sold depends on the interaction

between the size of the shock and the history-dependent kink formation.

8 Conclusion

Despite its central role in modern macroeconomic models, a price-setting mechanism that

happens to be both plausible and in line with the numerous pricing facts that have been

documented in the literature remains elusive. In this paper, we model an uncertainty-averse

�rm that learns about the demand it faces by observing noisy signals at posted price. The

limited knowledge allows the �rm to only characterize likely bounds on the possible non-

parametric demand schedules. Since the �rm is ambiguity-averse, it acts as if the true

demand is the one that yields the lowest possible total quantity sold at a given price. In

other words, for a price decrease the �rm is worried that there will be very little expansion

in demand; while it fears a drastic drop in quantity sold if it were to raise its price. This

endogenous switch in the worst-case scenario leads to kinks in the expected pro�t function.

This is akin to a cost, in terms of expected pro�ts, associated with moving to a new price.

A corollary implication is that because signals are noisy, repeated observations are useful in

order to learn about demand at a speci�c price. The �rm thus �nds it bene�cial to stick

with prices that it has less uncertainty about by having repeatedly posted them in the past.

This discrete set of previously observed past prices become ’reference prices’ at which there
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are kinks in the pro�t function. In addition, we show that if publicly available indicators
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Table 4: Predicting demand

(1) Across all items

Median p10 p25 p75 p90

Spaghetti sauce Detroit 0.26 0.05 0.12 0.5 0.95

Beer Boston 0.3 0.05 0.14 0.5 0.87

Frozen pizza Dallas 0.46 0.07 0.2 0.91 1.63

Peanut butter Seattle 0.45 0.08 0.2 0.83 1.36

(2) Item with most sales in category/market

Salted snacks Seattle 0.3 0.04 0.11 0.65 1.16

Beer NYC 0.46 0.17 0.3 0.71 1.23

Frozen dinner LA 0.48 0.09 0.23 0.84 1.35

Spaghetti sauce Dallas 0.28 0.05 0.13 0.53 0.9

The dependent variable is log(Q). Independent variables are: 2 lags of log(Q); log(P )+2

lags; log(P )2; log(P ) + 2 lags; log(P )
2
; item/store and week dummies, where log(P ) :

weighted average of weekly prices in category/market. The Table reports the moments

on the absolute in-sample prediction error: (Q�X b�)=Q.

Figure 1: Figure
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Figure 14: 3-year rolling regressions of 3-month industry ination on 3-month aggregate
ination for four categories. The solid line plots the point estimate of regression coe�cient
on aggregate ination. The dotted lines plot the 95% con�dence intervals.
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Figure 15: E�ect of current aggregate ination on Carbonated drinks industry ination,
both measured over a 1 month horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% con�dence interval using the smoothed estimated uncertainty.

Time

Figure 16: E�ect of current aggregate ination on Carbonated drinks industry ination, both
measured over a 3 months horizon. The solid line plots the Kalman smoothed estimate. The
dotted line plots the 95% con�dence interval using the smoothed estimated uncertainty.
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Figure 17: E�ect of current aggregate ination on Carbonated drinks industry ination, both
measured over a 6 months horizon. The solid line plots the Kalman smoothed estimate. The
dotted line plots the 95% con�dence interval using the smoothed estimated uncertainty.
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Figure 18: E�ect of current aggregate ination on Carbonated drinks industry ination,
both measured over a 1 year horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% con�dence interval using the smoothed estimated uncertainty.
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Time

Figure 19: E�ect of current aggregate ination on Carbonated drinks industry ination,
both measured over a 2 year horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% con�dence interval using the smoothed estimated uncertainty.
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Figure 20: E�ect of current aggregate ination on Carbonated drinks industry ination,
both measured over a 3 year horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% con�dence interval using the smoothed estimated uncertainty.
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Figure 21: E�ect of current aggregate ination on Carbonated drinks industry ination,
both measured over a 4 year horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% con�dence interval using the smoothed estimated uncertainty.

Time

Figure 22: E�ect of current aggregate ination on Carbonated drinks industry ination,
both measured over a 5 year horizon. The solid line plots the Kalman smoothed estimate.
The dotted line plots the 95% con�dence interval using the smoothed estimated uncertainty.
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Figure 23: Fraction of times that the current aggregate ination has an estimated e�ect
on Carbonated drinks industry ination that is not statistically di�erent from zero, at 95%
con�dence interval. Inations are computed over various horizons, ranging from 1 month to
5 years.
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Figure 24: Average, over industries, of the fraction of times that the current aggregate
ination has an estimated e�ect on industry ination that is not statistically di�erent from
zero, at 95% con�dence interval. Inations are computed over various horizons, ranging from
1 month to 5 years.
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